In general relativity, a white hole is a hypothetical region of spacetime which cannot be entered from the outside, although matter and light can escape from it. In this sense, it is the reverse of a black holes, which can only be entered from the outside and from which matter and light cannot escape. White holes appear in the theory of eternal black holes. In addition to a black hole region in the future, such a solution of the Einstein field equations has a white hole region in its past. However, this region does not exist for black holes that have formed through gravitational collapse, nor are there any known physical processes through which a white hole could be formed. No white hole has ever been observed. Also, the laws of thermodynamics say that the net entropy in the universe can either increase or remain constant. This rule is violated by white holes, as they tend to decrease entropy.

Like black holes, white holes have properties like mass, charge, and angular momentum.They attract matter like any other mass, but objects falling towards a white hole would never actually reach the white hole’s event horizon (though in the case of the maximally extended Schwarzschild solution, discussed below, the white hole event horizon in the past becomes a black hole event horizon in the future, so any object falling towards it will eventually reach the black hole horizon). Imagine a gravitational field, without a surface. Acceleration due to gravity is the greatest on the surface of any body. But since black holes lack a surface, acceleration due to gravity increases exponentially, but never reaches a final value as there is no considered surface in a singularity.

In quantum mechanics, the black hole emits Hawking radiation and so can come to thermal equilibrium with a gas of radiation (not compulsory ). Because a thermal-equilibrium state is time-reversal-invariant, Stephen Hawking argued that the time reverse of a black hole in thermal equilibrium is again a black hole in thermal equilibrium.This may imply that black holes and white holes are the same object. The Hawking radiation from an ordinary black hole is then identified with the white-hole emission. Hawking’s semi-classical argument is reproduced in a quantum mechanical AdS/CFT treatment, where a black hole in anti-de Sitter space is described by a thermal gas in a gauge theory, whose time reversal is the same as itself.



The possibility of the existence of white holes was put forward by I. Novikov in 1964. White holes are predicted as part of a solution to the Einstein field equations known as the maximally extended version of the Schwarzschild metric describing an eternal black hole with no charge and no rotation. Here, “maximally extended” refers to the idea that the spacetime should not have any “edges”: for any possible trajectory of a free-falling particle (following a geodesic) in the spacetime, it should be possible to continue this path arbitrarily far into the particle’s future, unless the trajectory hits a gravitational singularity like the one at the center of the black hole’s interior. In order to satisfy this requirement, it turns out that in addition to the black hole interior region which particles enter when they fall through the event horizon from the outside, there must be a separate white hole interior region which allows us to extrapolate the trajectories of particles which an outside observer sees rising up away from the event horizon. For an observer outside using Schwarzschild coordinates, infalling particles take an infinite time to reach the black hole horizon infinitely far in the future, while outgoing particles which pass the observer have been traveling outward for an infinite time since crossing the white hole horizon infinitely far in the past (however, the particles or other objects experience only a finite proper time between crossing the horizon and passing the outside observer). There is little evidence of white holes, though. The black hole/white hole appears “eternal” from the perspective of an outside observer, in the sense that particles traveling outward from the white hole interior region can pass the observer at any time, and particles traveling inward which will eventually reach the black hole interior region can also pass the observer at any time.

Just as there are two separate interior regions of the maximally extended spacetime, there are also two separate exterior regions, sometimes called two different “universes”, with the second universe allowing us to extrapolate some possible particle trajectories in the two interior regions. This means that the interior black-hole region can contain a mix of particles that fell in from either universe (and thus an observer who fell in from one universe might be able to see light that fell in from the other one), and likewise particles from the interior white-hole region can escape into either universe. All four regions can be seen in a spacetime diagram which usesKruskal–Szekeres coordinates. see figure.

In this spacetime, it is possible to come up with coordinate systems such that if you pick a hypersurface of constant time (a set of points that all have the same time coordinate, such that every point on the surface has a space-like separation, giving what is called a ‘space-like surface’) and draw an “embedding diagram” depicting the curvature of space at that time, the embedding diagram will look like a tube connecting the two exterior regions, known as an “Einstein-Rosen bridge” or Schwarzschild wormhole. Depending on where the space-like hypersurface is chosen, the Einstein-Rosen bridge can either connect two black hole event horizons in each universe (with points in the interior of the bridge being part of the black hole region of the spacetime), or two white hole event horizons in each universe (with points in the interior of the bridge being part of the white hole region). It is impossible to use the bridge to cross from one universe to the other, however, because it is impossible to enter a white hole event horizon from the outside, and anyone entering a black hole horizon from either universe will inevitably hit the black hole singularity.

Note that the maximally extended Schwarzschild metric describes an idealized black hole/white hole that exists eternally from the perspective of external observers; a more realistic black hole that forms at some particular time from a collapsing star would require a different metric. When the infalling stellar matter is added to a diagram of a black hole’s history, it removes the part of the diagram corresponding to the white hole interior region. But because the equations of general relativity are time-reversible (they exhibitT-symmetry), general relativity must also allow the time-reverse of this type of “realistic” black hole that forms from collapsing matter. The time-reversed case would be a white hole that has existed since the beginning of the universe, and which emits matter until it finally “explodes” and disappears. Despite the fact that such objects are permitted theoretically, they are not taken as seriously as black holes by physicists, since there would be no processes that would naturally lead to their formation, they could only exist if they were built into the initial conditions of the Big Bang. Additionally, it is predicted that such a white hole would be highly “unstable” in the sense that if any small amount of matter fell towards the horizon from the outside, this would prevent the white hole’s explosion as seen by distant observers, with the matter emitted from the singularity never able to escape the white hole’s gravitational radius.


1980s – onward

A view of black holes first proposed in the late 1980s might be interpreted as shedding some light on the nature of classical white holes. Some researchers have proposed that when a black hole forms, a big bang may occur at the core, which would create a new universe that expands outside of the parent universe. See also Fecund universes.

The Einstein–CartanSciamaKibble theory of gravity extends general relativity by removing a constraint of the symmetry of the affine connection and regarding its antisymmetric part, the torsion tensor, as a dynamical variable. Torsion naturally accounts for the quantum-mechanical, intrinsic angular momentum (spin) of matter. According to general relativity, the gravitational collapse of a sufficiently compact mass forms a singular black hole. In the Einstein–Cartan theory, however, the minimal coupling between torsion andDirac spinors generates a repulsive spin–spin interaction which is significant in fermionic matter at extremely high densities. Such an interaction prevents the formation of a gravitational singularity. Instead, the collapsing matter on the other side of the event horizon reaches an enormous but finite density and rebounds, forming a regular Einstein–Rosen bridge. The other side of the bridge becomes a new, growing baby universe. For observers in the baby universe, the parent universe appears as the only white hole. Accordingly, the observable universe is the Einstein–Rosen interior of a black hole existing as one of possibly many inside a larger universe. The Big Bang was a nonsingular Big Bounce at which the observable universe had a finite, minimum scale factor.

A 2011 paper argues that the Big Bang itself is a white hole. It further suggests that the emergence of a white hole, which was named a ‘Small Bang’, is spontaneous—all the matter is ejected at a single pulse. Thus, unlike black holes, white holes cannot be continuously observed—rather their effect can only be detected around the event itself. The paper even proposed identifying a new group of gamma-ray bursts with white holes. The idea of the Big Bang being produced by a white hole explosion was recently explored in the framework of a five dimensional vacuum by Madriz Aguilar, Moreno and Bellini in the paper.




black hole is a region of space time exhibiting such strong gravitational effects that nothing—including particles and electromagnetic radiation such as light—can escape from inside it. The theory of general relativity predicts that a sufficiently compact mass can deform space time to form a black hole. The boundary of the region from which no escape is possible is called the event horizon. Although crossing the event horizon has enormous effect on the fate of the object crossing it, it appears to have no locally detectable features. In many ways a black hole acts like an ideal black body, as it reflects no light. Moreover, quantum field theory in curved space time predicts that event horizons emit Hawking radiation, with the same spectrum as a black body of a temperature inversely proportional to its mass. This temperature is on the order of billionths of a kelvin for black holes of stellar mass, making it essentially impossible to observe.

Objects whose gravitational field are too strong for light to escape were first considered in the 18th century by John Michell andPierre-Simon Laplace. The first modern solution of general relativity that would characterize a black hole was found by Karl Schwarzschild in 1916, although its interpretation as a region of space from which nothing can escape was first published by David Finkelstein in 1958. Black holes were long considered a mathematical curiosity; it was during the 1960s that theoretical work showed they were a generic prediction of general relativity. The discovery of neutron stars sparked interest in gravitationally collapsed compact objects as a possible astrophysical reality.

Black holes of stellar mass are expected to form when very massive stars collapse at the end of their life cycle. After a black hole has formed, it can continue to grow by absorbing mass from its surroundings. By absorbing other stars and merging with other black holes, supermassive black holes of millions of solar masses (M) may form. There is general consensus that supermassive black holes exist in the centers of most galaxies.

Despite its invisible interior, the presence of a black hole can be inferred through its interaction with other matter and with electromagnetic radiation such as visible light. Matter that falls onto a black hole can form an external accretion disk heated by friction, forming some of the brightest object in the universe. If there are other stars orbiting a black hole, their orbits can be used to determine the black hole’s mass and location. Such observations can be used to exclude possible alternatives such as neutron stars. In this way, astronomers have identified numerous stellar black hole candidates in binary systems, and established that the radio source known as Sagittarius A*, at the core of our own Milky Way galaxy, contains a supermassive black hole of about 4.3 million solar masses.

On 11 February 2016, the LIGO collaboration announced the first observation of gravitational waves; because these waves were generated from a black hole merger it was the first ever direct detection of a binary black hole merger. On 15 June 2016, a second detection of a gravitational wave event from colliding black holes was announced.

Formation and evolution

Considering the exotic nature of black holes, it may be natural to question if such bizarre objects could exist in nature or to suggest that they are merely pathological solutions to Einstein’s equations. Einstein himself wrongly thought that black holes would not form, because he held that the angular momentum of collapsing particles would stabilize their motion at some radius. This led the general relativity community to dismiss all results to the contrary for many years. However, a minority of relativists continued to contend that black holes were physical objects, and by the end of the 1960s, they had persuaded the majority of researchers in the field that there is no obstacle to the formation of an event horizon.

Once an event horizon forms, Penrose proved, general relativity without quantum mechanics requires that a singularity will form within. Shortly afterwards, Hawking showed that many cosmological solutions that describe the Big Bang have singularities without scalar fields or other exotic matter (see “Penrose–Hawking singularity theorems“).The Kerr solution, the no-hair theorem, and the laws of black hole thermodynamics showed that the physical properties of black holes were simple and comprehensible, making them respectable subjects for research. The primary formation process for black holes is expected to be the gravitational collapse of heavy objects such as stars, but there are also more exotic processes that can lead to the production of black holes.

Once a black hole has formed, it can continue to grow by absorbing additional matter. Any black hole will continually absorb gas and interstellar dust from its surroundings and omnipresent cosmic background radiation. This is the primary process through which super massive black holes seem to have grown. A similar process has been suggested for the formation of intermediate-mass black holes found in globular clusters.

Another possibility for black hole growth, is for a black hole to merge with other objects such as stars or even other black holes. Although not necessary for growth, this is thought to have been important, especially for the early development of super massive black holes, which could have formed from the coagulation of many smaller objects. The process has also been proposed as the origin of some intermediate-mass black holes.


Information loss paradox

Because a black hole has only a few internal parameters, most of the information about the matter that went into forming the black hole is lost. Regardless of the type of matter which goes into a black hole, it appears that only information concerning the total mass, charge, and angular momentum are conserved. As long as black holes were thought to persist forever this information loss is not that problematic, as the information can be thought of as existing inside the black hole, inaccessible from the outside. However, black holes slowly evaporate by emitting Hawking radiation. This radiation does not appear to carry any additional information about the matter that formed the black hole, meaning that this information appears to be gone forever.

The question whether information is truly lost in black holes (the black hole information paradox) has divided the theoretical physics community (see Thorne–Hawking–Preskill bet). In quantum mechanics, loss of information corresponds to the violation of vital property called unitarity, which has to do with the conservation of probability. It has been argued that loss of unitarity would also imply violation of conservation of energy. Over recent years evidence has been building that indeed information and unitarity are preserved in a full quantum gravitational treatment of the problem.